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This paper describes experimental observations of a solid sphere suspended by a 
vertical or inclined jet. A laminar Newtonian jet is able to suspend a sphere only 
through viscous entrainment at low Reynolds numbers (Re - 10). A turbulent 
Newtonian jet (Re - lo4) attracts a sphere that is sufficiently large but rejects smaller 
ones. The Coanda effect is responsible for steady suspension of solid spheres even in 
highly slanted jets. Anomalous rotation, opposite to the direction of the local shear, 
occurs under certain conditions, and its physical mechanism cannot be explained based 
on available information. A viscoelastic laminar jet is narrower than a comparable 
Newtonian one and it can suspend spheres at Reynolds numbers in the hundreds, 
precisely the Re range in which a Newtonian jet fails to suspend a sphere. It is suggested 
that the contrast between laminar Newtonian and viscoelastic jets may be related to a 
reversal in the pressure distribution on the surface of the sphere caused by non- 
Newtonian normal stresses. Flow visualization provides insights into the flow field in 
the jet and around the solid sphere. 

1. Introduction 
In 1870, Osborne Reynolds published a paper about the suspension of a ball on top 

of a vertical water jet in air. He noticed a remarkable phenomenon: when the ball is 
moved away from the centre of the jet, it always goes back. The lateral restoring thrust 
results from the fact that the water on the inner side of the ball tends to adhere to the 
solid surface and is not thrown out until it passes the top of the ball. A similar effect 
has been observed with submerged jets. The easiest demonstration is the suspension of 
a ping-pong ball by an air jet generated by a hair-dryer. The physical mechanism is 
identified as the Coanda effect, by which a jet tends to flow along the curved surface 
of a solid body that is partially inserted into the jet, and is deflected to the side of the 
body. The Coanda effect can be easily explained by potential flow theory (Lighthill 
1945). The reduction of flow area caused by the protruding solid body creates a low 
pressure in the jet which bends the jet along the solid surface. Interestingly, another 
flow phenomenon is also known by the name of Coanda effect. A thin air jet otherwise 
tangential to a curved solid surface will bend and flow along the surface, sometimes 
covering a large turning angle without separation (Newman 1961). This is a viscous 
effect associated with the flow of the surrounding fluid entrained by the jet (Wille & 
Fernholz 1965; Bradshaw 1973). 

Based on the above works, it is well understood why a sphere can be in stable 
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equilibrium suspended by a vertical jet. More puzzling phenomena, however, have 
been observed when a freely rotating sphere or circular cylinder is introduced into the 
shear layer of a wide jet. Goldshtik (1981, 1990) described an ‘anomalous rotation’ of 
the solid body (opposite to the local vorticity) that occurs within a narrow range of 
submersion depth. At the same time, the cylinder or sphere experiences a lateral force 
that pushes it away from the jet, in obvious contrast to the Coanda effect. A potential 
flow theory was developed to explain the anomalous rotation (Goldshtik 1981) which 
relies on the postulate that the circulation around the solid object be such that the 
maximum velocity on the solid contour is minimized. Unlike the Kutta-Zhukowskii 
condition, this postulate has not found its justification from theories of viscous flow. 
The true mechanism is evidently related to viscosity. 

The present paper was inspired by Goldshtik’s work and will describe experimental 
findings about the motion of a free sphere suspended by a vertical or inclined liquid jet. 
Newtonian and viscoelastic fluids are used. Some of the observations cannot be readily 
explained from our knowledge of fluid mechanics. These results raise questions about 
the effects of viscous shear on the motion of particles, which bear great relevance to 
multiphase flows, and about the effects of viscoelasticity in such complex flows. 

2. Experimental setup and procedure 
The observations were done within a test chamber made of Plexiglas. Its bottom is 

a 25.4 cm x 25.4 cm square and its height is 38.1 cm. The jet is introduced by a nozzle 
mounted on the bottom of the chamber; the opening on the bottom plate is 8.6 cm 
from one side wall and 16.8 cm from the other. The nozzle can rotate in the mid-plane 
of the chamber to generate inclined jets (figure 1). The top of the chamber is open and 
the liquid overflows into a receiving trough that leads it back to the main tank. The 
simple loop is driven by a sine-pump and the flow rate is calibrated by a catch-and- 
measure method using a stop watch and an accurate scale. The sphere is introduced 
into the jet from the free surface above using a pair of long tweezers. The storage tank 
holds up to 120 1 of liquid, though 50 1 is enough to maintain steady circulation in the 
loop. 

In our experiments, nozzles of three different inner diameters were used: D = 
1.092 cm (the small nozzle), 2.0 cm (the medium nozzle) and 2.54 cm (the large nozzle). 
In operation, smaller nozzles are inserted into the large one and secured by sealant. The 
length of the nozzle inside the chamber is between 6.35 and 8.75 cm. Aluminium, 
stainless steel, ceramic, rubber and glass spheres of diameters between 1.11 and 3.18 cm 
are used. For spheres of different material the results are qualitatively the same, and 
data will be presented selectively. Four different fluids were used: water, pure glycerin, 
88 wt YO glycerin in water and 0.85 wt % polyethylene oxide (Polyox-WSR301 provided 
by Union Carbide) in distilled water. The density and viscosity of the three Newtonian 
fluids are listed in table 1. The properties of the polyox solution have to be specifically 
measured. 

One basic concern in using polyox solutions in a large flow loop is mechanical 
degradation. The solution was prepared in a large tank with mild agitation; the mixing 
took 10 days to complete. The design of the sine-pump also helps minimize damage to 
the molecular structure of the polymer. Because the characteristic shear rate (the 
maximum velocity in the nozzle divided by its radius) can be as high as 300 s-’, and 
there is strong extension in the circulation, degradation did occur in the experiments. 
Three samples of the polyox solution (A, B and C) were taken before, during and after 
the experiments. Their shear-viscosity and dynamic modulii were measured in a 
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FIGURE 1. A schematic diagram of the flow loop and the observation chamber. 

Fluids 
Density Kinematic viscosity 

Pf (g cm-Y v (cm2 s-I) 

Water 0.998 0.0 10 04 
Pure glycerin 1.259 11.44 
88 wt YO glycerol 1.23 1.199 

TABLE 1. The density and kinematic viscosity of the Newtonian test fluids at 20 "C 

Rheometrics RFS-I1 rheometer (figure 2). The continuous degradation poses a 
difficulty for data reduction. We decided to use the viscosity curve of sample B in 
calculating the Reynolds number. The high-shear-rate portion of curve B in figure 2(a) 
is fitted to a power law: 

q = 0.7859j-0.4465, 

the units of q and j being Pa s and s-l, respectively. The characteristic shear rate lies 
well within the power-law range in all experiments. The density of the polyox solution 
is almost exactly the same as that of water. 

The position of the suspended sphere is measured, without parallax errors, by two 
coordinate systems laid out on the front and back walls of the chamber. The angular 
velocity is determined from analysing a high-speed video recording of the sphere. 
Visualization has been done by two different methods. To show the outline of the entire 
flow-field, we first establish a steady circulation in the loop and then inject dye inside 
the storage tank. Pictures can be taken before the observation chamber receives too 
much of the coloured liquid. To show details of the flow near the sphere, we use a laser 
sheet to illuminate the symmetric plane of the flow. Tiny air bubbles naturally trapped 
in highly viscous liquids or generated in water by adding a small amount of detergent 
serve as tracers. 

Because of the fragile nature of polyox solutions, the flow system has been designed 
to be simple and compact. A prudent researcher might be concerned with effects of the 
sidewalls on the jet or the disturbance of the pump to the flow. Also the continuous 
degradation throws doubt on the accuracy of the quantitative results. However, the 
data exhibit distinctive trends and should be reliable qualitatively. 
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FIGURE 2. Degradation of 0.85 wt % polyox solution. Sample A was taken immediately after the 
solution was prepared; B was taken in the middle of the experiments and C after all experiments were 
finished. (a) Shear viscosity, (b) storage modulus and (c)  loss modulus. 
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3. Results and discussion 
3.1. Newtonian jet  

In an inclined jet, a sphere cannot stay in the centre because of gravity. If there is a 
lateral force to support the sphere and ensure an eccentric equilibrium position for it 
(figure 3), then this position (x,y) and the rotation of the sphere o depend on the 
following variables: the diameter and density of the sphere d and ps, the density and 
kinematic viscosity of the fluid pf and v, the characteristic velocity of the jet U (the 
average velocity in the nozzle), gravitational acceleration g ,  the inner diameter of the 
nozzle D and its angle of inclination a. Dimensional analysis gives five independent 
dimensionless groups: p = ps/pf ,  K = d / D ,  Re = Ud/v (Reynolds number), Fr = 
gd /U2  (Froude number) and a. These determine three dependent groups: 52 = wd/U, 
x / D  and y / D .  We found that it is more convenient to combine Re, Fr and K into 
another parameter G = gD3/v2 .  If we use G in place of Fr, the effect of U appears in 
Re only. Then for a set of experiments done with the same a, D and the same fluid, the 
only independent variables are Re and K .  Most of the data will be presented in terms 
of these parameters. 

A submerged jet in a cylindrical vessel has four regimes of flow depending on the jet 
Reynolds number Re, = UD/v  (McNaughton & Sinclair 1966) : dissipated-laminar jet, 
fully laminar jet, semi-turbulent jet and fully turbulent jet. In our setup, the top of the 
chamber is left open and a dissipated-laminar jet never occurs. Even at  the lowest 
Reynolds number, the jet was able to rise to the free surface. Interesting behaviour of 
a solid sphere has been observed in fully laminar and fully turbulent jets; this will be 
discussed in three distinctive ranges of the Reynolds number. Note that Re and Re, are 
different but of the same order of magnitude. 

3.1.1. Low Reynolds numbers 
Those experiments were carried out using pure glycerin. The Reynolds number is of 

the order of 10 and the jet is laminar. At such low Re, the potential flow theory of 
Lighthill (1945) does not apply and it is impossible to have the sphere stably suspended 
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FIGURE 4. An aluminium sphere suspended by entrained flow outside of a Newtonian jet. 
p = 2.755, a = 4", K = 0.9525, Re = 11.59, G = 59.95. 

inside the jet. When placed on the centreline of a vertical jet, the sphere immediately 
jumps outwards and falls off. 

However, if the sphere is carefully placed outside the mainstream near the exit, a 
stable suspension is possible. The sphere rotates steadily in the sense of the local shear 
(normal rotation). This equilibrium persists even if the nozzle is inclined up to a certain 
angle. Figure 4 shows a steadily spinning aluminium sphere suspended 'outside' the jet. 
The suspending force obviously comes from the flow of surrounding liquid that is 
entrained by the jet. Owing to the high viscosity of glycerin, the entrainment is very 
strong (Schlichting 1979, p. 233). The direction of the entrained flow is such that it 
creates a lateral force toward the centre of the jet in addition to the upward thrust. It 
is interesting to note that the steady suspension only exists within a specific range of 
Re. The sphere's position and angular velocity in this range are shown in figure 5 for 
a slightly inclined jet. As Re increases, the sphere moves up and slightly away from the 
centre of the jet and its rotation decreases. If Re exceeds the upper bound of the stable 
range, the sphere will first be pushed into the mainstream of the jet, where it is 
immediately thrown upwards. Then it is driven out of the jet at a high elevation and 
falls down. When it is close to the mouth of the nozzle, entrained flow again pushes it 
into the jet and the cycle is repeated. The amplitude of this oscillation increases with 
Re. If Re is reduced below the lower bound of the stable range, the sphere acquires a 
high-frequency, small-amplitude vibration. It eventually falls down if Re is further 
reduced. 

3.1.2. Medium Reynolds numbers 
These observations were made using 88 wt YO glycerol. The Reynolds number is 

between 40 and 400, and the jet remains fully laminar. For all values of the parameters 
Re, G, a, K and p that we can achieve, the sphere cannot be suspended by the jet, neither 
by the central part issuing from the nozzle nor by the entrained flow. If we hold a 
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FIGURE 5. The position and rotation of an aluminium sphere suspended by entrained flow at low 

Reynolds number. p = 2.755, K = 0.9525, a = 4", G = 59.95. 

sphere in an eccentric position in the jet, we can feel a strong lateral thrust that pushes 
the sphere outwards. The mechanism of this lateral lateral repulsion may be related to 
the effects of the curvature of the velocity profile. 

As an example, the range of Re covered using the medium nozzle and aluminium 
spheres of different diameters is between 44.4 and 130.4. It appears that the Reynolds 
numbers in this range are too small for the Coanda effect to be important, yet large 
enough that the viscous entrainment is severely suppressed. An important purpose of 
testing Newtonian jets in this Re range is for comparison with the viscoelastic polyox 
solution (53.2). The concentration of glycerol was chosen such that its viscosity roughly 
matches that of the polyox solution under typical shear rates found in the experiment. 
We note in passing that the jet Reynolds number in our experiment is well within the 
laminar range of McNaughton & Sinclair (1966) but far exceeds the critical Reynolds 
number for a free jet (see, for example, Morris 1976). This is obviously a manifestation 
of the stabilizing effects of the sidewalls. 

3.1.3. High Reynolds numbers 
Using water as the test fluid, we obtained Reynolds numbers of the order of lo4. The 

jet is fully turbulent (McNaughton & Sinclair 1966). For a vertical jet, steady 
suspension can be achieved within a range of flow rate as long as the sphere is larger 
than a critical size. Smaller spheres fall out of the jet at any flow rate. The smallest K- 

value for which steady suspension was observed in our experiment is 0.675 (a 1.35 cm 
diameter aluminium sphere with the medium tube). The existence of a minimum K was 
also reported by Goldshtik (1990), although he asserted that suspension is possible 
only if d 2 D. The flow rate has to be sufficiently large, of course, to carry the buoyant 
weight of the sphere. As U increases, the equilibrium position moves up. After U 
exceeds a threshold value, the sphere starts to oscillate up and down endlessly. 

If the jet is slanted, the sphere shifts outward to an equilibrium position below the 
centreline of the jet. At large angles of inclination, the sphere is so far from the centre 
of the jet that it seems to be hanging onto the edge of the jet. As inclination increases, 
the range of flow rate for steady suspension narrows. For the largest inclination 
allowed by our device (a = 30"), steady suspension can still be obtained with some 
spheres. It is easy to imagine that a maximum a exists beyond which steady suspension 
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FIGURE 6. The position and angular velocity of stainless steel spheres at different inclinations of 
the jet issuing from the small nozzle. p = 7.942, G = 1.227 x lo7. (a) Position of two spheres. 
Filled symbols represent x / D  and open ones y / D .  Circle: Re = 6.149 x lo4, K = 1.454; square: 
Re = 2.442 x lo4, K = 1.018. (b) Angular velocities of three spheres at different Re. 

is impossible. As soon as the jet is slanted, the sphere acquires a rotation that can be 
in either direction. Detailed data are presented next. 

As mentioned earlier, we need only consider the effects of a, K and Re for a fixed p 
and G. Using the same fluid, the same nozzle and spheres of the same material, we 
observed the following trend. Larger spheres tend to rotate normally and smaller ones 
anomalously. A sphere that rotates normally at large Re may rotate anomalously at 
smaller Re. Rotation in either direction increases as a increases. 

The position and rotation as functions of a are illustrated in figure 6. As a increases, 
both x and y increase monotonically. This is because of the increasing component of 
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FIGURE 7. Position and rotation of stainless spheres with the small nozzle. p = 7.942, 
G = 1.227 x lo', a = 10". (a)  Position: open symbols represent x / D  and filled ones y / D .  (b)  Angular 
velocity. 

gravity in the y-direction and the decreasing component in the x-direction (cf. figure 3). 
The rotation, normal or anomalous, increases with a. The four curves in figure 6(b) 
also demonstrate the effects of K and Re. Apparently, the effects of K may be isolated 
by using a stronger jet for smaller spheres and thus keeping Re constant. But the 
spheres would end up at very different heights in the jet, and the difference in local 
shear would obscure the effects of K.  An alternative is to use spheres of different sizes 
but the same weight suspended at the same jet Reynolds number Re,. This amounts 
to using a different combination of the independent variables in presenting the data. 

For a fixed inclination a = lo", the effects of K and Re on x / D ,  y / D  and 52 have been 
studied using spheres of various materials and nozzles of different sizes. The trends are 
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FIGURE 8. Position and rotation of stainless steel spheres with the medium nozzle. p = 7.942, 
G = 7.848 x lo', OL = 10". (a) Position: open symbols represent x / D  and filled ones y / D .  (b) Angular 
velocity. 

the same in all runs. Figure 7 shows a typical set of results for stainless steel spheres 
with the small nozzle. With increasing flow rate (or Re), x / D  increases monotonically 
(figure 7 4 .  The variation in y / D  is smaller and more susceptible to experimental 
errors. For normally rotating spheres, y / D  increases with Re (curves 2, 3, 4). For 
anomalously rotating spheres, y / D  tends to decrease with Re (curve 1). This is 
sometimes followed by a levelling off or even a slight increase as Re gets larger. This 
tendency appears consistently in all runs. The rotation of the sphere can be classified 
into three regimes. At small Re (below 4 x  lo4 in figure 7b), anomalous rotation 
prevails which decreases with Re. This may be associated with the fact that as the flow 
rate increases the sphere is driven higher and closer to the centre of the jet where it 
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FIGURE 9. Correlation of the angular velocity of stainless steel spheres with the medium nozzle. 
p = 7.942, G = 7.848 x lo', a = 10". 

experiences smaller shear. The upper bound of this regime is where the sphere does not 
rotate at all. Further increasing Re induces an increasing normal rotation, which is the 
main feature of the second regime. In the third regime, increasing Re tends to reduce 
the speed of normal rotation. In this regime the sphere is floated in the upper part of 
the observation chamber where the jet is wide and the shear is relatively small. 

A better picture of the first regime (with anomalous rotation) can be obtained using 
a larger nozzle (figure 8). Anomalous rotation prevails for the entire Re-range we can 
cover. Again y / D  tends to decrease as Re increases. The most interesting feature of SZ 
is that curves with different K are roughly 'parallel' to one another and can be collapsed 
onto one single curve by shifting Re. This gives rise to the 'master curve' in figure 9 
which can be fitted into an empirical equation in terms of ReK'. ':  

D = -4.644+ 1.305 x 10-4(Re~-1.7)-9.279 x l O - l ' ( R e ~ - ' . ~ ) ~  

for p = 7.942, G = 7.848 x lo', a = 10". 

Data for aluminium spheres with the medium nozzle exhibit similar behaviour: a single 
curve can be obtained by plotting D against ( R ~ K - ' . ~ ' ) .  The difference in the power 
index evidently reflects the effect of p. To show the effect of G, we go back to the results 
in figure 7(b). These data for stainless steel spheres with the small nozzle already appear 
to lie on a single curve, suggesting a small influence of K .  A better collapse is found 
using Re and the master curve can be fitted into the following formula (figure 10) : 

52 = 26.16 exp (- I .071 x lop4 Re K-', ')  - 33.56 exp (- 1.145 x lop4 Re K O . ' )  

for p = 7.942, G = 1.227 x lo', a = loo). 

The behaviour of suspended spheres raises a few questions. What is the flow 
mechanism of the jet-sphere attraction that keeps a ball in the centre of a vertical jet 
or hangs it on an inclined jet? What causes the anomalous rotation? As pointed out 
by Goldshtik (1990), the answer to the first question is the Coanda effect. Visualizations 
of the jet flow around normally and anomalously rotating spheres are shown in figure 
1 1 .  For the thinner jet (figure 1 1  a), there seem to be signs of the Coanda effect. The 
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FIGURE 10. Correlation of the angular velocity of stainless steel spheres with the small nozzle. 
p = 7.942, G = 1.227 x lo', a = 10". 

(a) (6)  

FIGURE 1 1 .  Flow around a sphere in an inclined jet. (a) Normal rotation of a ceramic sphere. 
p = 3.813, G = 1.227 x lo7, a = 12.5", K = 2.236, Re = 9.838 x lo4, ( x / D ,  y / D )  = (4.354, 0.8422) 
and R = 0.03857. (b) Anomalous rotation of a rubber sphere. p = 1.185, G = 1.608 x lo8, a = lo", 
K = 1, Re = 1.652 x lo4, ( x / D ,  y / D )  = (3.174, 0.4387) and SZ = -0.2325. One may note that the 
jet is deflected to the left (a) or the right (b) depending on the direction of rotation. 
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FIGURE 12. Visualization of the wake behind a non-rotating rubber sphere. The flow parameters are 
p =  1.185,G=7.848x107,a=10o,~=1.27,Re=1.906x101;thesphereisat(x/D,y/D)=(1.99, 
0.4295). 

flow is more curved on the right-hand side of the ball; this flow wraps a larger portion 
of the solid surface and causes a bulge, after separation, on the upper left of the wake. 
For the thick jet in figure 11 (b), no such signs are discernible. A better illustration of 
the Coanda effect comes from a closer image of the wake (figure 12). The flow 
conditions are such that the sphere is not rotating, and the wake is symmetric. The 
Reynolds number is 1.906 x lo4 and there is a very small, if any, circulation zone 
behind the ball. In a uniform stream, the sphere would see a wide and long circulation 
zone behind it at such Re (Van Dyke 1982, p. 34). It is the jet’s tendency to cling onto 
curved solid surfaces that explains the steady suspension of a sphere in a vertical or 
inclined jet. Note that the Coanda effect is a result of fluid inertia and has nothing to 
do with turbulent fluctuations. So turbulence is not what differentiates the high-Re 
regime from the medium-Re regime. In fact, a turbulent circular jet has the same 
velocity profile as a laminar one, and both spread linearly. 

The cause of the anomalous rotation is still a mystery. Whatever the flow situation, 
the upshot must be an asymmetric distribution of shear stress on the solid surface that 
creates a torque. Consider a sphere placed in an eccentric position as in figure 11  but 
not allowed to rotate. The Coanda effect is such that the stream on the right-hand side 
of the sphere is faster and goes around a larger part of the circle. It is hard to imagine 
that the shear stress would be stronger on the left-hand side of the sphere. The flow field 
around an anomalously rotating sphere is shown in figure 13. There are closed 
streamlines around the solid surface. The stream on the left bends along the sphere and 
meets the stream on the right. This pattern of streamlines closely resembles that of a 
jet past a rotating body (Chiou & Lee 1993). Hence, it is the result of the rotation, not 
the cause. 

In the experiments of Goldshtik (1981), cylinders and spheres that can rotate freely 
are inserted into the boundary of wide water and air jets. The diameter of the jet is 
typically a few times larger than that of the cylinder or sphere. When only one side of 
the solid body is in contact with the jet, it rotates normally as can be intuitively 
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FIGURE 13. Streamlines around a rubber sphere in anomalous rotation. The laser sheet comes from 
the left in (a) and from the right in (b) .  Flow parameters are: p = 1.185, G = 1.608 x lo8, CL = lo", 
K = 1 ,  Re = 1.357 x lo4, ( x / D ,  y / D )  = (0.9802, 0.4657), SZ = -0.4741. 

expected. After the solid body is entirely submerged in the jet, it rotates anomalously 
and experiences a lateral thrust that pushes the body outwards. In our experiments we 
also noticed that spheres sufficiently smaller than the jet nozzle are repulsed by the jet. 
Hence, Goldshtik's anomalous rotation and ours may be due to the same mechanism. 
A fluid mechanical explanation calls for direct measurement of the flow field and 
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FIGURE 14. The position and rotation of an aluminium sphere in an inclined jet of polyox solution 
issuing from the small tube. Re = 223.8, K = 1.454, p = 2.755, G = 3.494 x lo3. The Weissenberg 
number We = 0.2182. 

a (deg.1 

especially the shear stress on the surface of the sphere. Numerical simulations will also 
be of great value. Finally, there seems to be a relationship between the rotation of the 
sphere and the lateral thrust on it. Anomalous rotation tends to enhance the lateral lift 
and reduce y / D  while the opposite is true for normal rotation (figure 7). This tendency 
is in superficial contradiction to the Magnus effect. 

3.2. Viscoelastic jet 
Only laminar jets are studied for the polyox solution. The Reynolds number is in the 
hundreds. To estimate the relaxation time of the fluid A, we use the shear-wave speed 
measured by Liu & Joseph (1993) for 0.85 wt% polyox solution (c = 12.2 cm s-l) and 
the viscosity v at the characteristic shear rate: h = v/cz .  Then a Weissenberg number 
We can be calculated based on this relaxation time and the diameter of the spheres. 
Stable suspension was achieved with various combinations of spheres and nozzles 
within ranges of Re and a. Normal rotation occurs in all cases as long as the jet is 
inclined. The effects of a on (x, y )  and Q are shown in figure 14, in which Re and G are 
computed using the viscosity at the characteristic shear rate. The trends are similar to 
observations of turbulent Newtonian jets: x, y and Q all increase with a. The rotation 
is depicted in figure 15 as a function of Re for different spheres and nozzles at a fixed 
inclination a = 10". In most cases D decreases as Re increases. For the small nozzle, 
larger spheres rotate faster (figure 15a, b). For the medium nozzle, rotation is generally 
much slower and the smaller sphere rotates faster than the larger one (figure 15c). It 
is not clear how viscoelastic parameters such as the Weissenberg number and the shear- 
thinning power-index enter the picture, so we will not write empirical correlations for 
the angular velocity. 

The stable suspension of spheres in this Re-range provides an interesting contrast to 
the Newtonian experiments in the same Re-range. Note that the sphere, nozzle and Re 
in figure 15(c) are the same as in the 'unsuccessful' runs using 88% glycerol ($3.1.2). 
To explain this contrast, one must understand (i) how non-Newtonian properties such 
as shear-thinning and normal stresses affect the flow of a submerged laminar jet, and 
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FIGURE 15. The normal rotation of spheres in the polyox solution as a function of the Reynolds 
number. a = 10". (n)  Aluminium spheres with the small tube ( D  = 1.092 cm), p = 2.755. The 
parameter G is inapplicable because of the variable viscosity. We = 0.17 - 0.23. (b)  Stainless steel 
spheres with the small tube, p = 7.942. We = 0.29 - 0.43. (c) Aluminium spheres with the medium 
tube (D = 2 cm), p = 2.755. We = 0.19 - 0.25. 
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FIGURE 16. A submerged laminarjet of the polymer solution. There is little spread in the mainstream 
of the jet and almost no mixing along the edge. The Reynolds number based on the diameter of the 
nozzle and the viscosity of the liquid at the characteristic shear rate is 180.5. 

(ii) in this flow field, how a viscoelastic liquid reacts to the presence of the solid sphere. 
A sizable literature exists on laminar pseudoplastic jets (see, for example, Mitwally 
1978). Analytical and numerical studies of plane and axisymmetric jets of power-law 
fluids have all arrived at the same conclusion: pseudoplastic jets spread wider; the 
central part of the velocity profile is flatter and the maximum velocity decays faster. 
Jordan, Rankin & Sridhar (1992) used LDV to measure the velocity profiles at various 
longitudinal stations. The velocity distribution is indeed flatter in the middle, but the 
spread of the jet seems to be suppressed and the decay of the maximum velocity is 
slower. The discrepancy probably stems from the fact that the polyacrylamide solution 
(made from Separan AP30) retains some elasticity even after the severe agitation 
described in their paper. 

Studies of submerged laminar viscoelastic jets are scarce. Berman & Tan (1985) 
intended to investigate the turbulent structure of polymeric jets. For one of 
their samples, 100 p.p.m. polyacrylamide in de-ionized water, the jet stays laminar for 
2400 < Re < 4200. Measurements show that this jet is narrower than a Newtonian jet 
at the same Re and the central velocity decay is slower, consistent with results of Jordan 
et al. (1992). In our experiments, visual observations of the tiny air bubbles in the 
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solution suggest that the jet entrains much less surrounding liquid than a Newtonian 
jet does. There is little spread in the central part of the jet (figure 16). One may also note 
the onset of sinusoidal instability on the top of the jet in figure 16, which resembles 
Berman &Tan’s pictures. Hence, it can be stated that the viscoelasticjet has a narrower 
and steeper shear layer, owing to the elasticity of the polymer. 

If a solid sphere is placed inside this shear layer, certain distributions of shear and 
normal stresses will develop on the solid surface which give rise to the stable 
suspension. No information about this process is available. The normal rotation of the 
sphere seems to be a direct result of the local shear. For parallel non-uniform shear 
flows, Ho & Leal (1976) have demonstrated that non-Newtonian normal stress causes 
a small sphere to migrate in the direction of decreasing shear rate. If this argument 
applies to the jet flow, it implies a lateral thrust toward the centre of the jet. 
Unfortunately, we do not know to what extent this argument applies. The role of the 
special attributes of a jet that a parallel shear flow does not possess cannot be assessed 
based on our current knowledge. 

In our device, Reynolds numbers as low as 10 or as high as lo4 cannot be realized 
for the polyox solution. But one is tempted to speculate on the behaviour of the ball 
in those two cases. In almost all flow situations involving solid particles, Newtonian 
and viscoelastic liquids give exactly opposite results. Quite likely, stable suspension by 
entrained flow is impossible at low Re, since a viscoelastic jet entrains less liquid. It is 
not immediately clear what behaviour to expect at high Re to complete the perfect 
complementarity between Newtonian and viscoelastic jets. 

For the slow sedimentation of a long particle in a viscoelastic liquid, Feng et al. 
(1995) proved that the non-Newtonian normal stresses cause a reversal of the pressure 
distribution on the particle which explains the equilibrium orientation of the particle. 
We believe this mechanism is generic and is responsible for an array of ‘anomalous’ 
effects observed in the motion of particles in viscoelastic fluids. Specifically, it produces 
the lateral force that pulls a ball toward the centre of a viscoelastic jet at intermediate 
Reynolds numbers. Under similar conditions, a Newtonian jet exerts a repulsive force. 

4. Concluding remarks 
The experimental results discussed in the last section can be summarized as follows : 
(i) A solid sphere can be suspended outside the mainstream of a laminar Newtonian 

jet at Re - 10. The cause of this phenomenon is the flow of surrounding fluid entrained 
by the jet. 

(ii) At Reynolds number in the hundreds, a laminar Newtonian jet cannot suspend 
a solid sphere. 

(iii) At high Reynolds numbers ( R e  - lo4), a turbulent Newtonian jet suspends a 
sphere by the Coanda effect unless the sphere is too small. The rotation of the sphere 
in an inclined jet can be in either direction. The mechanism of the anomalous rotation 
is unclear. 

(iv) A viscoelastic laminar jet does not spread as much as a comparable Newtonian 
jet; it entrains less fluid and the central velocity decays more slowly. 

(v) A viscoelastic laminar jet can suspend solid spheres when the Reynolds number 
is in the hundreds. The lateral lift may be associated with non-Newtonian normal 
stresses. The rotation is always normal. 

This work emphasizes observations of qualitative behaviour rather than accurate 
measurements, and is only a preliminary study. Fundamental data, such as the velocity 
field in the jet, need to be obtained from more refined experiments. Detailed 
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measurements of this kind may also help explain the anomalous behaviour found in 
our observations. 
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